
简介:
- 作者: J. HUANG, Y. DING, J. YAO, K. PENG, K. DENG, M. ZHANG, Y. ZHANG, J. ZUO
- 杂志: European Review for Medical and Pharmacological Sciences
- Doi: https://www.doi.org/10.26355/eurrev_202207_29316
- 出版日期: 2022 Jul
论文中使用的产品/服务
Quotation shows PackGene:Freund’s incomplete adjuvant (CAT#B545288, Sangon Biotech, Shanghai, China), HEK-293T/ACE2 cells (CAT#nCov-3), and SARS-CoV- 2_del19AAGFP pseudovirus (CAT#LV-nCov2) were purchased from Packgene, Guangzhou, Guangdong, China.
Research Field:Covid-related
摘要
OBJECTIVE: Vaccination is an important method for preventing COVID-19 infection. However, certain vaccines do not meet the current needs. To improve the vaccine effect, discard ineffective antigens, and focus on high-quality antigenic clusters, S1-E bivalent antigens were designed. MATERIALS AND METHODS: Vaccine delivery is performed using poly (lactic-co-glycolic acid) (PLGA). Here, the recombinant S1-E (rS1-E) was covered on PLGA and injected intramuscularly into mice. In total, 48 BALB/c mice were randomly divided into six groups with 8 mice in each group. The mice received intramuscular injections. Prior to vaccination, the hydrophobicity of the rS1-E and the antigenic site of the E protein were both analysed. The morphology, zeta potential, and particle size distribution of rS1-E-PLGA were examined. Anti-S1 and anti-E antibodies were detected in mouse serum by ELISA. Neutralising an-tibodies were detected by co-incubating the pseudovirus with the obtained serum. IL-2 and TNF-α levels were also measured. RESULTS: The designed recombinant S1-E protein was successfully coated on PLGA nanoparticles. rS1-E-PLGA nanovaccine has suitable size, shape, good stability, sustained release and other characteristics. Importantly, mice were stimulated with rS1-E-PLGA nanovaccines to produce high-titre antibodies and a good cellular immune response. CONCLUSIONS: Our results indicate that rS1-E-PLGA nanovaccine may provide a good protective effect, and the vaccine should be further investigated in human clinical trials for use in vaccination or as a booster.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
