
Viral-mediated knockdown of Atxn2 attenuates TDP-43 pathology and muscle dysfunction in the PFN1C71G ALS mouse model
简介:
- 作者: Zachary C. E. Hawley, Xueying Li, Dora Bodnar, Yuanzheng Gu, Yi Luo, Daniel Ferretti, Adam Sheehy, Rachelle Driscoll, Maria I. Zavodszky, Shaolong Cao, Isabel Isaza, Luke Jandreski, Yuqing Liu, Thomas Carlile, Shih-Ching Lo, Anna Grimard, Shawn Bourque, Aditya Utturkar, Samantha Desmarais, H. Moore Arnold, Dann Huh, Edward Guilmette & Deborah Y. Kwon
- 杂志: Acta Neuropathologica Communications
- Doi: https://www.doi.org/10.1186/s40478-025-02005-z
- 出版日期: 2025-05-24
摘要
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron loss and muscle atrophy. Hyperphosphorylated aggregation of the RNA-binding protein, TDP-43, in the motor cortex and spinal cord are defining molecular features of ALS, suggesting TDP-43 dysfunction underlies disease pathogenesis. This phenomenon, however, has been difficult to recapitulate endogenously in animal models, impeding characterization of TDP-43 pathobiology in neurodegeneration. In this study, we report age-dependent accumulation of TDP-43 pathology in the spinal cord and progressive muscle-related deficits in transgenic mice expressing the ALS-associated PFN1C71G mutant protein. We show that transgenic neuronal expression of PFN1C71G induces early hyperphosphorylation of endogenous TDP-43 in the spinal cord that augments over time, preceding accumulation of insoluble non-phosphorylated TDP-43 and the manifestation of muscle denervation and motor dysfunction. Sustained knockdown of Atxn2 in the central nervous system (CNS) in pre-symptomatic PFN1C71G mice by AAV-driven expression of an artificial microRNA (AAV-amiR-Atxn2) reduces aberrant TDP-43 in the spinal cord, while delaying neurodegeneration and improving muscle and motor function. RNA-sequencing analysis of spinal cord samples from PFN1C71G mice and ALS donors show shared patterns of transcriptional perturbation, including a pro-inflammatory gene signature that is attenuated by AAV-amiR-Atxn2. Notably, impaired regulation of the PFN1C71G skeletal muscle transcriptome exceeds that of the spinal cord and is also improved by Atxn2 reduction in the CNS. Lastly, we find significant gene co-expression network homology between PFN1C71G mice and human ALS, with shared dysregulation of modules related to neuroinflammation and neuronal function and uncover novel hub genes that provide biological insight into ALS and potential drug targets that can be further investigated in this mouse model.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
