
HnRNP M expression rescues neurodegeneration in neuronal intranuclear inclusion disease mouse model by restoring dysregulated RNA splicing and transcription
简介:
- 作者: Yongcheng Pan, Yangping Li, Ying Jiang, Xinhui Wang, Juan Wan, Qiying Sun, Yun Tian, Lu Shen, Hong Jiang, Beisha Tang, Bing Yao, Qiong Liu
- 杂志: Cell and Bioscience
- Doi: https://www.doi.org/10.1186/s13578-025-01477-9
- 出版日期: 2025/10/6
摘要
Background: Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease caused by the expanded GGC repeats in the NOTCH2NLC gene, yet its underlying pathogenic mechanisms remains to be fully elucidated. Previous study suggests that hnRNP M, an RNA-binding protein sequestered into the inclusions, may contribute to RNA processing defects in NIID.
Results: In this study, we investigated the role of hnRNP M in NIID pathogenesis by utilizing a NOTCH2NLC-98GGC transgenic mouse model that faithfully recapitulates key NIID phenotypes. We found that AAV-mediated hnRNP M expression partially alleviated neuropathological features, such as neuronal loss and gliosis, and improved motor deficits in NIID mice. Transcriptome analysis further revealed that hnRNP M expression restored transcriptional and splicing dysregulation in synapse- and neurodegeneration-related genes, such as Dlg and Smn.
Conclusions: Our study established hnRNP M as a key regulator of NIID pathogenesis by modulating RNA transcription and splicing, underscoring the potential of targeting RNA processing abnormalities as a therapeutic strategy.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
