
Neurobiology-Expression Pattern of ALOXE3 in Mouse Brain Suggests Its Relationship with Seizure Susceptibility
简介:
- 作者: Hui-Ling Tang, Si-Yu Chen, Huan Zhang, Ping Lu, Wei-Wen Sun, Mei-Mei Gao, Xiang-Da Zeng, Tao Su & Yue-Sheng Long
- 杂志: Cellular and Molecular Neurobiology
- Doi: https://www.doi.org/10.1007/s10571-020-00974-4
- 出版日期: 2020 Oct 15
论文中使用的产品/服务
Quotation shows PackGene:The AAV vector pAAV2-ALOXE3-mCherry containing the coding sequences of mouse Aloxe3 (GenBank accession ID: NM_011786) and red fluorescent protein mCherry was provided by PackGene Biotech (Guangzhou, China).
Research Field:CNS
AAV Serotype:AAV2
Targeted organ:brain
Animal or cell line strain:Male Swiss mice
摘要
Arachidonic acid (AA), a polyunsaturated fatty acid, is involved in the modulation of neuronal excitability in the brain. Arachidonate lipoxygenase 3 (ALOXE3), a critical enzyme in the AA metabolic pathway, catalyzes the derivate of AA into hepoxilins. However, the expression pattern of ALOXE3 and its role in the brain has not been described until now. Here we showed that the levels of Aloxe3 mRNA and protein kept increasing since birth and reached the highest level at postnatal day 30 in the mouse hippocampus and temporal cortex. Histomorphological analyses indicated that ALOXE3 was enriched in adult hippocampus, somatosensory cortex and striatum. The distribution was restricted to the neurites of function-specific subregions, such as mossy fibre connecting hilus and CA3 neurons, termini of Schaffer collateral projections, and the layers III and IV of somatosensory cortex. The spatiotemporal expression pattern of ALOXE3 suggests its potential role in the modulation of neural excitability and seizure susceptibility. In fact, decreased expression of ALOXE3 and elevated concentration of AA in the hippocampus was found after status epilepticus (SE) induced by pilocarpine. Local overexpression of ALOXE3 via adeno-associated virus gene transfer restored the elevated AA level induced by SE, alleviated seizure severities by increasing the latencies to myclonic switch, clonic convulsions and tonic hindlimb extensions, and decreased the mortality rate in the pilocarpine-induced SE model. These results suggest that the expression of ALOXE3 is a crucial regulator of AA metabolism in brain, and potentially acts as a regulator of neural excitability, thereby controlling brain development and seizure susceptibility.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
