
A Universal Approach to Target Various HBB Gene Mutations in Hematopoietic Stem/Progenitor Cells for Beta-Thalassemia Gene Therapy by CRISPR/Cas9 and the rAAV6 Vector
简介:
- 作者: Li-Na He, Yi Yang, Yi Cheng, Han Wu, Shou-Heng Lin, Bing Song, Neng-Qing Liu, Di-Yu Chen, Dian Lu, Ying-Hong Yang, Juan Zeng, Yong Fan, Sun Xiaofang
- 杂志: Research Square
- Doi: https://www.doi.org/10.21203/rs.3.rs-68414/v1
- 出版日期: 2020 Sep 9
论文中使用的产品/服务
Quotation shows PackGene:AAV vector plasmids were cloned in the ssAAV-MCS plasmid (PackGene Biotech) containing inverted terminal repeats (ITRs) from AAV serotype 2 (AAV2) using Gibson Assembly Mastermix (New England Biolabs).
Research Field:Beta-Thalassemia Gene Therapy
AAV Serotype:AAV6
Animal or cell line strain:HSPCs were cultured in three phases for differentiation 4 days after electroporation and transduction with AAV6.
摘要
Background: Engineered nuclease-mediated gene targeting through homology-directed repair (HDR) in autologous hematopoietic stem and progenitor cells (HSPCs) has the potential to cure β-thalassemia (β-thal). Although previous studies have precisely corrected site-specific HBB mutations by HDR in vitro and in vivo, targeting the various HBB mutations in β-thal is still challenging. Here, we devised a universal strategy to achieve repaired most types of HBB mutations through the CRISPR/Cas9 and the rAAV6 donor. Methods: Using cord blood-derived HSPCs from health donors, we tested the strategy to achieved highly efficient targeted integration by optimizing design and delivery parameters of a ribonucleoprotein (RNP) complex comprising Cas9 protein and modified single guide RNA, together with a rAAV6 donor. We assessed the edited HSPCs function in vitro by methylcellulose colonies assay, CFU assay, differentiation experiment and Wright-Giemsa staining. Edited HSPCs transplanted into NSI mice to assess the long-term reconstitution in vivo. Whole-genome sequencing was used to analysis the off-target mutagenesis of edited HSPCs. Results: Edited HSPCs exhibited normal multilineage formation and erythroid differentiation abilities without off-target mutagenesis and retained the ability to engraft. Moreover, we used the strategy to efficiently correct the β-CD41/42 mutation of patient-derived HSPCs, erythrocytes differentiation from which expressed more HBB mRNA than uncorrected cells. Conclusion: This strategy demonstrated a universal approach to correct most types of HBB gene mutations in β-thal.
关于派真
作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IIT、IND及BLA的各个阶段。
凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。
