In vivo genome editing using novel AAV-PHP variants rescues motor function deficits and extends survival in a SOD1-ALS mouse model

分享:

简介:

  • 作者: Yi A. Chen, Mark W. Kankel, Sam Hana, Shukkwan Kelly Lau, Maria I. Zavodszky, Olivia McKissick, Nicole Mastrangelo, Jessica Dion, Bin Wang, Daniel Ferretti, David Koske, Sydney Lehman, Kathryn Koszka, Helen McLaughlin, Mei Liu, Eric Marshall, Attila J. Fabian, Patrick Cullen, Galina Marsh, Stefan Hamann, Michael Craft, Jennifer Sebalusky, H. Moore Arnold, Rachelle Driscoll, Adam Sheehy, Yi Luo, Sonia Manca, Thomas Carlile, Chao Sun, Kirsten Sigrist, Alexander McCampbell, Christopher E. Henderson, and Shih-Ching Lo
  • 杂志: Gene Therapy
  • Doi: https://www.doi.org/10.1038/s41434-022-00375-w
  • 出版日期: 2022 Dec

论文中使用的产品/服务

Quotation shows PackGene:The sgRNAs were synthesized and cloned into the expression constructs by PackGene (Worcester, MA, USA). Each AAV construct contains a U6 promoter that drives expression of a sgRNA, and either a CBA promoter that drives expression of a green fluorescence protein (eGFP) fused with a KASH domain or a CAG promoter that drives expression of a mCherry fluorescence protein. All AAV vectors, including AAV-PHP.B and AAV-PHP.eB, were purchased from PackGene (Worcester, MA, USA).

Research Field:CNS

AAV Serotype:AAV-PHP.B and AAV-PHP.eB,

Targeted organ:brain

Animal or cell line strain:H11Cas9 mice [B6J.129-Igs2tm1.1(CAG-cas9*) Mmw/J; and transgenic SOD1.G93A mice (B6.Cg-Tg(huSOD1*G93A)1Gur/J; stock #: 004435) were purchased from the Jackson Laboratory. All mice were backcrossed for at least eight generations to C57BL/6 mice. Homozygous H11Cas9 female mice and heterozygous SOD1-G93A male mice were crossed to generate H11Cas9−/+; SOD1G93A−/+ mice and age-matched H11Cas9−/+; huSOD1.G93A−/− littermates.

询价

摘要

CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.

关于派真

作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IITINDBLA的各个阶段。

 

凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。

下载

用户登录

还没账号? 请注册
手机验证码登录
账号密码登录
手机号码*
验证码*
忘记密码?

首次使用手机号登录将自动为您注册

登录即代表阅读并接受《注册协议》 《用户协议》

新用户注册

已有账号?
手机注册
邮箱注册
手机号码*
验证码*
机构名称*
客户类型*

重置密码

手机找回密码
邮箱找回密码
手机号码*
验证码*
设置新密码*
确认新密码*