Circular single-stranded DNA is a superior homology-directed repair donor template for efficient genome engineering

分享:

简介:

  • 作者: Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan and Hao Wu
  • 杂志: BioRxiv
  • Doi: https://www.doi.org/10.1101/2022.12.01.518578
  • 出版日期: 2022 Dec 2

论文中使用的产品/服务

Quotation shows PackGene:For AAV6-medaited engineering, recombinant AAV6 donor vector (manufactured by PackGene) was added to the culture immediately after electroporation at 2 × 10^4 multiplicity of infection.

Research Field:genome editing

AAV Serotype:AAV6

询价

摘要

The toolbox for genome editing in basic research and therapeutic applications is rapidly expanding. While efficient targeted gene ablation using nuclease editors has been demonstrated from bench to bedside, precise transgene integration remains a technical challenge. AAV6 has been a prevalent donor carrier for homology-directed repair (HDR) mediated genome engineering but has reported safety issues, manufacturing constraints, and restricted applications due to its 4.5 Kb packaging limit. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. Both dsDNA and lssDNA have been previously demonstrated to have low efficiency and cytotoxicity. Here, we developed a non-viral genome writing catalyst (GATALYST™) system which allows production of ultrapure, minicircle single-stranded DNAs (cssDNAs) up to ∼20 Kb as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs), superior efficiency in multiple clinically relevant primary cell types, and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. When applied to immune cell engineering, cssDNA engineered CAR-T cells exhibit more potent and durable anti-tumor efficacy than those engineered from AAV6 viral vectors. The exceptional precision and efficiency, improved safety, payload flexibility, and scalable manufacturability of cssDNA unlocks the full potential of genome engineering with broad applications in therapeutic development, disease modeling and other research areas.

关于派真

作为一家专注于AAV 技术十余年,深耕基因治疗领域的CRO&CDMO,派真生物可提供从载体设计、构建到 AAV、慢病毒和 mRNA 服务的一站式解决方案。凭借深厚的技术实力、卓越的运营管理和高标准的服务交付,我们为全球客户提供一站式CMC解决方案,包括从早期概念验证、成药性评估到IITINDBLA的各个阶段。

 

凭借我们独立知识产权的π-alphaTM 293 细胞AAV高产技术平台,我们能将AAV产量提高多至10倍,每批次产量可达1×10¹⁷vg,以满足多样化的商业化和临床项目需求。此外,我们定制化的mRNA和脂质纳米颗粒(LNP)产品及服务覆盖药物和疫苗开发的各个阶段,从研发到符合GMP的生产,提供端到端的一站式解决方案。

下载

用户登录

还没账号? 请注册
手机验证码登录
账号密码登录
手机号码*
验证码*
忘记密码?

首次使用手机号登录将自动为您注册

登录即代表阅读并接受《注册协议》 《用户协议》

新用户注册

已有账号?
手机注册
邮箱注册
手机号码*
验证码*
机构名称*
客户类型*

重置密码

手机找回密码
邮箱找回密码
手机号码*
验证码*
设置新密码*
确认新密码*